May 15, 2018

Meeting Bureau of Land Management’s Natural Gas Requirements While Saving Time and Money


Jamie Marsden

By Jamie Marsden, Business Development Manager, Gas Chromatographs, Emerson Automation Solutions

Are you faced with the challenge of meeting the measurement accuracy requirements of the Bureau of Land Management (BLM)? And do you have a plan of how you could ensure compliance while staying focused on production rather than gathering samples?

Gas producers must comply with the BLM 43 CFR 3175 regulations, which establish minimum standards for accurate measurement and proper reporting of all gas removed or sold from Federal and Indian (except the Osage Tribe) leases, units, Unit Participating Areas (PAs), and areas subject to Communitization Agreements (CAs).

The BLM rule provides a system for production accountability by operators, lessees, purchasers, and transporters. This rule establishes overall gas measurement performance standards and includes, among other things, requirements for the hardware and software related to gas metering equipment, reporting, and recordkeeping. The BLM rule also identifies certain specific acts of noncompliance that may result in an immediate assessment and provides a process for the BLM to consider variances from the requirements of this rule.

There’s a way to be compliant with these regulations while reducing measurement errors and the costs of complying with 40 CFR 3175. Simplifying the process can allow you to focus on production rather than gathering samples. The approach is to use the appropriate natural gas chromatograph (GC). For example, Emerson’s Rosemount™ 370XA and 770XA GCs reduce BTU measurement errors often found with spot sampling. The online sampling of field-mounted GCs eliminates the need for personnel to frequently travel to the Facility Measurement Point (FMP) to pull a sample; saving man hours and travel costs. The 370XA is ideal for C6+ applications while the 770XA is ideal for C9+ applications or where hydrocarbon liquids may be present. Both are compact in design, don’t require a shelter, offer low utility gas consumption, and operate on 24 Vdc. This makes them perfect for remote locations.

The 370XA and 770XA provide analysis per requirements of the Gas Processors Association (GPA). They offer fully pre-engineered custody transfer application solutions that provide accurate and repeatable measurement analysis for the heating value of natural gas (§§3175.118).

In addition, the use of an advanced GC software solution such as the Emerson MON2020 further simplifies compliance and reduces maintenance and operation costs. The software gives you complete control of the GC either locally or remotely. You can store 88 days of analysis results, over a year of final calibration results, and over 1,700 chromatograms. The analysis report provides heating value and relative density.

In total, a straightforward evaluation of technologies can save natural gas operators both time and money. Managing compliance using the appropriate gas chromatograph not only meets BLM 43 CFR 3175 regulatory requirements, it saves substantial time and money while allowing the user to employ a familiar, proven, and highly accurate technology for the job.

Do you use GCs to meet BLM requirements? What is your approach?

April 23, 2018

New GC Webinar Series to Help You Optimize Analyzer Performance

By Khadra Helminski, Global Integrated Marketing Manager, Rosemount Gas Analysis, Emerson Automation Solutions

Gas chromatographs perform critical measurements in a wide range of process and natural gas industries. In many applications like natural gas production and custody transfer, these measurements translate directly into profitability, process efficiency, and regulatory and contract compliance. That’s why optimizing the performance of your GC can have a big impact on your bottom line.

To help users get the most from their GC over the course of its lifecycle, Emerson is offering a free webinar series that brings together our GC experts to offer trusted insights and best practices. The webinars will also provide answers to most frequently asked questions and solutions to challenges operators may be facing in the field. The first webinar in the series is coming right up –

WEBINAR 1: GC’s Response Factors and Why They Are Important
Tuesday, May 1, 2018
10 AM – 11 AM CDT (Houston)

Emerson’s GC expert, Bonnie Crossland, will discuss the importance of GC’s response factor. Understanding how a detector responds to the measured components can provide an effective way to validate the correct operation of your gas chromatograph. Changes in the detector’s response to the measured components can indicate changes in the analysis that might cause inaccurate measurements.

This webinar will review the elements that can cause variations in a response factor, and how those variations can be used to help troubleshoot the gas chromatograph.

Sign up for the webinar now and help maximize your GC performance.

March 27, 2018

Maximize Your Gas Chromatograph’s Efficiency and Performance – Free Rosemount 370XA Gas Chromatograph Introduction E-Course

By Bonnie Crossland, Product Manager, Rosemount Gas Chromatographs, Emerson Automation Solutions

Knowledge is key to maximizing the capabilities of your Rosemount™ Gas Chromatographs (GC). Understanding how to properly operate and maintain your GC will help increase uptime, reduce maintenance costs, and extend asset life.

Regardless of your experience level, the Rosemount gas chromatograph online course will provide the knowledge and expertise you need to ensure your operations run as safely and efficiently as possible. This free e-course will provide attendees with a basic understanding of the 370XA gas chromatograph and will cover:
370XA gas chromatograph training preview

  • Capability and hardware
  • Installation and startup
  • Local operator interface (LOI)
  • Auto Valve Timing and Analysis Cycle
  • Calibration
  • Maintenance
  • Data Output and Chromatograms



Normally, this e-course is valued at $100, but for a limited time, you can sign up for free.

370XA gas chromatograph maintenance

Plus, if you complete this e-course and take our short survey by June 1, 2018, you’ll be eligible for 15% off your next Rosemount course, including any online courses and hands-on courses at one of our Emerson training centers.

Emerson offers a wide range of both online e-courses and more in-depth, in-person, hands-on training classes on the theory, operations, and maintenance practices for analyzers and instrumentation. For more information on Rosemount’s full range of courses, browse our course catalog, or view a calendar of our instructor-led courses at our training centers in Houston, Minneapolis, and Charlotte.

Register today for the online 370XA gas chromatograph course – a flexible, engaging, convenient way to learn about our GC technologies and solutions and how you can maximize the benefits it offers your plant.

October 17, 2017

The Right Gas Chromatograph for the Job

By Bonnie Crossland, Product Marketing Manager – Gas Chromatographs, Emerson Automation Solutions

Balancing the right level of gas chromatograph (GC) performance and cost for individual applications and locations within a plant or installation is key for many operators. Increased pressure to optimize processes is driving an increased demand for accurate and timely composition analysis for use in process control and product quality assurance. To continue to meet these demands, Emerson’s Rosemount 1500XA process gas chromatograph adds new enhancements to provide faster compositional feedback and complete, high-resolution analysis, helping operators optimize product specifications and maximize throughput.

Rosemount™ 1500XA Process Gas Chromatograph

The Rosemount™ 1500XA process gas chromatograph is designed for refining, petrochemical, power, and environmental applications where selected components in gaseous or liquid streams must be precisely monitored on a continuous basis. The recent enhancements to the 1500XA enable parallel chromatography, offering oven capacity for up to eight chromatograph valves and four detectors, two of which can be flame detectors. Depending on the application, the 1500XA can include flame ionization or flame photometric detectors for measurement of compounds in the parts-per-billion ranges, or thermal conductivity detectors (TCD) capable of handling applications with parts-per-million measurement requirements.

The 1500XA, like the entire Emerson GC family, is characterized by ease-of-use, ruggedness, and reliability. Emerson is currently the only online GC supplier to offer a lifetime warranty on chromatograph valves. The valves are rated for more than five million operations before repair, which involves simply replacing the diaphragms and can be done easily on-site.

With its numerous valves and detectors, the 1500XA can take a complex analysis application and break it down into smaller, simpler analysis blocks. These blocks are then run in parallel, reducing analysis time and providing faster, easier maintenance and troubleshooting, as well as straightforward data analysis. A complex analysis that may have previously taken 20 minutes may now only take 10 minutes, allowing quicker response to process changes. The 1500XA’s concurrent analysis can be used to reduce the time between analyses by running them at offset times. This can increase the number of analyses within a set time period.

Emerson’s MON2020 software allows the 1500XA to operate completely unattended while making analyzer configuration, maintenance, and data collection easy, either locally or remotely. With intuitive dropdown menus and fill-in-the-blank tables, even new users can quickly navigate through the software.

Since many users are looking for cost-effective and reliable GC solutions, the 1500XA with parallel chromatography and concurrent analysis capabilities more than fulfills that need. When combined with the 370XA and 700XA gas chromatographs, the 1500XA rounds out the widest single selection of gas chromatographs on the market. This makes the Emerson GC family flexible, and reduces costs for integrators and users alike. Used in a wide range of industries, the Emerson GC line allows users to get precisely the performance they require in each location and application while maintaining the same easy-to-use interfaces, the unique software capabilities, and common maintenance requirements.

If you have any questions, comment HERE. Or, to learn more about the right GC for the job, visit

May 26, 2017

The Most Efficient, Effective Way to Meet 40 CFR Part 63 Petroleum Refinery Flare Requirements


By Bonnie Crossland, Product Manager, Gas Chromatographs, Emerson Automation Solutions

As you may know, by January 30, 2019, 40 CFR Part 63 requires that petroleum refinery owners or operators of flares used as control devices for emissions points must meet the requirements of §63.670, regardless of the construction date of the flare. The regulation is part of the 1990 Clean Air Act that regulated emission standards for hazardous air pollutants (HAP) and is in addition to 40 CFR 60 Subpart Ja requirements. 40 CFR Part 63 regulations require determining the concentration of individual components in the flare vent gas within 15 minutes or direct monitoring of the net heating value of the flare vent gas at standard conditions.

I’m happy to tell you that Emerson Automation Solutions has developed two standard solutions that are compliant with 40 CFR Part 63 using its Rosemount 1500XA gas chromatograph (GC).

Why use a GC? Generally, you can consider three possible approaches when trying to meet petroleum refinery flare requirements – a calorimeter, a mass spectrometer, or a GC. A calorimeter is a relatively low-cost instrument, the measurement principle of which is burning the gas and measuring the heat generated. It has analysis time in the seconds range and simple maintenance, which all sounds very desirable. However, it requires a shelter for outdoor use, which adds significantly to its cost, and most important, it provides no information on what’s happening in the process or what’s going up the stack. Without composition information, there’s no way to determine which unit is generating the flare gases, which limits your response to a flare event.

A mass spectrometer provides individual component concentrations within the flare but at a very hefty price. Likewise, it requires a shelter, and is very difficult to maintain, often requiring a calibration gas for every component as well as a multicomponent blend. It usually requires monthly adjustments with notoriously high operating costs.

Which brings us to the GC solution. Like the mass spectrometer, the GC provides individual components (including isomers) within the flare but without the high price. The Emerson GC specifically requires no enclosure (saving even more money), it’s easy to maintain with simple thermal conductivity detectors (TCDs) for this application, provides information on what’s happening in the process through its easy-to-use software, and it provides updates well within 40 CFR Part 63 requirements.

Emerson Rosemount’s 1500XA gas chromatograph offers the greatest flexibility in measuring, calculating, and recording the individual component concentrations present in the flare vent gas. Emerson is offering two standard 8-minute solutions using the Rosemount 1500XA with multiple TCDs to meet the requirements of 40 CFR Part 63, Subpart CC (Refinery MACT 1) and 40 CFR Part 63, Subpart UUU (Refinery MACT 2). Solution 1 looks at hydrocarbons, H2S, H2, CO and CO2, and Solution 2 adds benzene detection. Custom solutions that measure, calculate, and record operators’ specific flare compositions are also available.

A GC provides an efficient and cost-effective approach to meeting the 40 CFR Part 63 requirements which every petroleum refinery plant is facing. If you’d like to discuss the possible implementation in your plant, give me a call at 713.396.8832, or contact

How far along are you in meeting 40 CFR Part 63?