Hi. I’m Marc Mason, business development manager, and I’m happy to be your analytic expert today. You know the old saying, “You have to spend money to make money”? Well, in the water industry we’re finding that many water plants have to spend money to save money. Recently, Tom Johnson, water industry business development manager at Emerson, wrote an article for Water & Wastes Digest that talks about advanced technologies like radar leveling, Waste Water Art-2reagent-free liquid analysis, ultrasonic control, wireless measurement devices, advanced predictive diagnostics, and SCADA control systems, and how case histories are showing the cost savings that water treatment plants can garner from investing in emerging advanced analytical, diagnostics and measurement technologies, as well as the control systems that manage those technologies. The case history described in the article demonstrates this premise pretty clearly –

Taylorsville-Bennion Improvement District serves 70,000 people in approximately 14 square miles in the center of the Salt Lake Valley, Utah. The district has approximately 16,700 connections and 229 miles of water lines. For many years, it tried to keep its old chlorine and fluoride sensors and analyzers running by constantly rebuilding, recalibrating and replacing parts. While this seemed like the cost-effective thing to do, it was proving too much for the district’s small staff – a situation familiar to many managers. The units were laborious to rebuild and required replacement of two to three probes per year; plus, they used expensive membranes that were difficult to replace and often broke during installation. The district estimates that the cost to operate the old sensors and analyzers was approximately $9,000 per year at its three locations. The units required daily attention and annual rebuilds, adding labor costs to the equation.

When the district decided to replace the old sensors and analyzers with the latest technology, its situation changed drastically. The new systems were built to last three years, versus one year, and were known to be effective as long as 15 years. The new technologies were reagent-free, reducing costs and maintenance, and needed far less frequent calibration. Bottom line: the district now replaces the membranes and electrolyte of the chlorine systems for $150 per year, compared to more than $6,000 in maintenance costs for the old systems. While the new equipment was costlier to purchase, the dramatically lower cost of ownership is rapidly offsetting that differential – a situation that can apply to many technologies.

There are many other examples of cost savings quoted in the article. Click HERE to read it.

How about you? Have you invested in what seemed a costly technology, only to discover it saved money? We’d love to hear your story.